Por favor, use este identificador para citar o enlazar este ítem: http://ciqa.repositorioinstitucional.mx/jspui/handle/1025/755
Modificación Superficial de Nanoplaquetas de Grafeno y Nanotubos de Carbono Mediante Polimerización por Plasma Frío de Etileno para el Desarrollo de Nanocompuestos de Polietileno Elaborados Mediante un Proceso Secuencial de Dispersión por Ultrasonido y Mezclado en Estado Fundido
ERIKA ELIZABETH GARCIA PADILLA
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Doctorado en tecnología de polímeros
This study investigates the enhancement of linear low-density polyethylene (LLDPE) nanocomposites with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (CNT) at concentrations of 1, 3, and 6% w/w. To improve the interfacial interaction between the nanoparticles and the polymer matrix, the nanoparticles were treated with cold ethylene plasma in a rotating reactor. The incorporation of nanoparticles into the polymer was carried out using a melt mixing process (MMP) and a sequential method of ultrasonic dispersion followed by melt mixing (UDM-MMP). The study examines the impact of concentration, plasma treatment, and mixing methods on the thermal, electrical, and mechanical properties of the nanocomposites. Results demonstrate significant improvements in the properties of the nanocomposites, directly correlated with variations in concentration, plasma treatment, and preparation techniques employed. In the nanocomposites manufactured via UDM-MMP, the thermal stability of the composites containing 6% p-GNP showed an increase of 35°C compared to pristine LLDPE. As for electrical conductivity, it was enhanced reaching values of 10-12 S/cm for the nanocomposites with a 6% concentration of GNP. Likewise, the elastic modulus increased from 425 to 550 MPa for the nanocomposite containing 6% p-GNP, showing a significant improvement in mechanical properties due to plasma modification and processing via UDM-MMP. In the nanocomposites fabricated with CNT via UDM-MMP, the thermal stability of the composites containing 6% p-CNT increased by 45°C compared to pristine LLDPE. The electrical conductivity reached the order of 10-2 S/cm for the nanocomposite with a 6% concentration of CNT, and the elastic modulus increased from 519 to 840 MPa for the nanocomposite with 6% p-CNT. The findings highlight significant improvements in conductivity and the potential for advanced applications where materials with high stiffness and mechanical strength are required.
2024
Tesis de doctorado
QUÍMICA
Aparece en las colecciones: Tesis de Doctorado

Cargar archivos:


Fichero Descripción Tamaño Formato  
Tesis DTP Erika E. García Padilla.pdfTesis DTP Erika E. García Padilla3.35 MBAdobe PDFVisualizar/Abrir